

1969

State University of Ghent - Faculty of Sciences - Laboratory of Ecology

start research on Artemia culturing biology

larvi '91

fish & crustacean larviculture symposium august 27-30, 1991 gent, belgium

ADVANTAGES OF GREEN-WATER VERSUS CLEAR-WATER TECHNIQUE

more hypotheses than proofs black box approach – need for new research approach

NEW APPROACH IN THE STUDY OF HOST-MICROBE INTERACTIONS

Gnotobiotic culture of Artemia

Gnotobiotic culture of Artemia

Development of innovative microbial management systems

ARTEMIA AS MODEL SYSTEM IN LARVICULTURE RESEARCH

- host-microbe interactions
- breeding studies
- epigenetics
- nutrition studies bioflocs

ARTEMIA AS MODEL SYSTEM IN LARVICULTURE RESEARCH

 host-microbe interactions → Influencing microbial numbers or activity quorum sensing / quorum quenching Poly-β-hydroxybutyrate → Stimulating the host's immune response ☐ heat shock proteins yeast cell wall-bound glucan

Quorum Sensing (QS)

bacteria **sense and respond** to environmental changes and to each other through **extracellular**

signal molecules ≈ hormones in higher organisms

Presence of QS signal molecules affects gene expression

f.ex. virulence factors (biofilm formation, toxin secretion, etc.)

new concept: **QS-disruption to control bacterial infections**verification with *Vibrio harveyi* QS mutants - effect on *Artemia* survival

QS-disruption to control bacterial infections

☐ use of QS inhibitors (e.g. plant extracts)

degradation of QS signals by other bacteria

Artemia Vibrio harveyi

Macrobrachium Vibrio harveyi

Burbot Aeromonas hydrophila

Crustaceans: 10-100 μM

Fish: 0.01 μM

QS-disruption to control bacterial infections

- ☑ use of QS inhibitors (e.g. plant extracts)
- degradation of QS signals by other bacteria f.ex. *Bacillus* strains isolated from aquatic organisms

QS-disruption to control bacterial infections

- ☑ use of QS inhibitors (e.g. plant extracts)
- degradation of QS signals by other bacteria use of signal-degrading probionts in *Macrobrachium* larviculture

ARTEMIA AS MODEL SYSTEM IN LARVICULTURE RESEARCH

host-microbe interactions

→ Influencing microbial numbers or activity

☑ quorum sensing / quorum quenching

Poly-β-hydroxybutyrate

→ Stimulating the host's immune response

- heat shock proteins
- yeast cell wall-bound glucan

Poly-β-hydroxybutyrate PHB as a bio-control strategy in larviculture

Short chain fatty acids (SCFA) and organic acids:

- ⇒ bacteriostatic and bacteriocidal effects on pathogens
- ⇒ influence invasion capacity of pathogens
- ⇒ beneficial effects on host intestinal cells
- → Does PHB have a protective effect against *Vibrio* infection?

PHB as dietary ingredient for *Artemia* challenge test with pathogenic *Vibrio campbellii*

significant increase of survival at 100 mg/L and 1000 mg/L PHB

ARTEMIA AS MODEL SYSTEM IN LARVICULTURE RESEARCH

host-microbe interactions

→ Influencing microbial numbers or activity

☑ quorum sensing / quorum quenching

Poly-β-hydroxybutyrate

→ Stimulating the host's immune response

- ☐ heat shock proteins
- yeast cell wall-bound glucan

Heat shock proteins (Hsps)

Hsp

- ✓ highly conserved proteins, available in all living cells
- ✓ Induced after exposure to stressors (heat, cold, O_2 deprivation, radicals, disease etc)

✓ Inside the cell, act as molecular chaperones - assist in protein biogenesis and degradation

 Extracellular Hsps serve as danger signals and modulate both innate and adaptive immune responses

Hsps effects in Artemia - Vibrio challenge test

Hsps effects in Artemia - Vibrio challenge test

Correlation exists between enhanced protection and Hsp70 accumulation

new concept: use of Hsp-inducing compounds

- ✓ heat shock is not an ideal way to enhance Hsps in aquaculture
- ✓ less traumatic approaches are needed to manipulate Hsps expression
- ✓ can compound(s) extracted from plants induce Hsp70 in aquaculture animals?
- ✓ can they confer protection against stress and disease?

Protective effect of Hsp-inducing compounds against *Vibrio harveyi*

Protective effect of Hsp-inducing compounds against *Vibrio harveyi*

Validation with common carp Cyprinus carpio

Hsp-inducing plant extract protects against lethal ammonia toxicity

Development of innovative microbial management systems

The Artemia genome so far

- mtDNA sequenced (Valverde et al., 1994)
- **2n = 42** (*A. persimilis* 44) (Abreu-Grobois, 1987; Badaracco et al., 1987)
- Genome size estimation ~ 1 Gb
 (De Vos et al., 2013)
- AFLP-based linkage map with 433 AFLP markers
 (De Vos et al., 2013)

The Artemia genome today

23,860 coding genes identified

- √ host-microbe interactions
- breeding studies
- epigenetics
- nutrition studies bioflocs

- ✓ host-microbe interactions
- breeding studies
- → Artemia: suitable tool as

gene discovery platform

for crustaceans?

1st test case:

breeding for thermo-tolerance

Allele shift detection in relevant genes by whole genome re-sequencing

- √ host-microbe interactions
- ✓ breeding studies
- epigenetics
- nutrition studies bioflocs

- ✓ host-microbe interactions
- ✓ breeding studies
- epigenetics

→ heritable modification of phenotypes
 without modification at genotype level
 (modification of DNA/histones)

Thermo-tolerance test (common garden experiment)

Thermo-tolerance test (common garden experiment)

Opportunities for application of epigenetics in aquaculture

- √ host-microbe interactions
- ✓ breeding studies
- ✓ epigenetics
- nutrition studies bioflocs
- → Artemia as a model for

microbe-based feeding

Industry Society ■ yields & quality sustainability Morphological ■ disease 凶 food security development **Aquatic veterinary** Life cycle analysis medicine **Environmental Nutritional** monitoring research Microbial **Genomics** management

Faculty of Bioscience Engineering

Animal Production - Patrick Sorgeloos and Peter Bossier
Biochemical and Microbial Technology – Nico Boon and Tom Van de Wiele
Ecotoxicology and Environmental Sanitation – Colin Janssen
Environmental Sustainability Assessment – Jo Dewulf

Faculty of Veterinary Medicine

Morphology – Wim Van den Broeck and Annemie Decostere Virology, Parasitology and Immunology – Hans Nauwynck

Faculty of Sciences

Biology – Dominique Adriaens and Magda Vincx Molecular Genetics – Marnik Vuylsteke, Yves Van de Peer and Dirk Inzé

Thank you www.aquaculture.ugent.be slide layout courtesy Jean Dhont

Thank you www.aquaculture.ugent.be slide layout courtesy Jean Dhont

