Development of Zn and Mn enrichment method in live feed and nutritional importance in marine fish larvae

By

Nguyen Van Tien ^{1,2}, Seiji Matsumoto², Yutaka Haga³, Tomonari Kotani ⁴, Hiroshi Fushimi ⁴, Shuichi Satoh ³

¹Research Institute for Aquaculture No 1, Viet Nam

²Scientific Feed Laboratory Co. Ltd., Japan

Tokyo University of Marine Science and Technology, Japan

⁴Fukuyama University, Japan

Introduction

- Growth and survival of hatchery-raised finfish are affected by the nutritional value of live feeds such as rotifers and Artemia.
- Manipulation of nutrient profiles of live feeds has been improved growth, survival and quality of hatchery-raised fingerlings (example: enrichment of live feeds with HUFAs, vitamin A, taurine....)
- So far, little effort has been directed toward the enrichment of live foods with minerals

Zn and Mn are important minerals for growth and normal skeletal development

Zn

- **4** Stimulates bone mineralization and bone protein synthesis
- Deficiency causes dwarfism and disturbance of skeletal formation

Mn

- Constitutes of enzymes and involves in carbohydrate, lipid and protein metabolism
- Deficiency causes impaired growth and abnormal skeleton

Vertebral deformity in hatchery-raised red sea bream Hattori et al., 2003

Objectives

- ▶ Develop new method to enrich Zn and Mn in rotifers and Artemia nauplii to the level of these minerals in natural zooplanktons.
- ◆To investigate the effects of Zn and Mn supplementation in *Artemia* on early growth, body compositions and skeletal deformity of red sea bream larvae

Experiment 1: Examination direct absorption of Zn by rotifers

Can rotifer directly absorp Zn from enrichment media?

Experimental conditions

- Zinc source: ZnSO₄ (0, 5, 10 ppb)
- Organism: rotifer (*Brachionus plicatilis*) (L size)
- Stocking Density:
 - rotifer: 500ind/ml
 - chlorella: 3×10⁶ cell/mL
- Sampling: Rotifer, Culture media at 0 h,12 hrs, 24 hrs
- Tank: 30 L round-shaped tank
- Water temperature: 27°C
- Replication: Duplicate

Fig 1. Zn accumulation in the rotifer (DM)

The rotifers could not absorb and retain zinc in their body from enrichment media effectively

Zinc concentration in Chlorella

Chlorella could absorb water-bound zinc more effective than the rotifer

It is possible to enrich *Chlorella* with zinc as a first step of enrichment. The *Chlorella* thus produced contained high levels of zinc and can be fed to rotifers.

Experiment 2: Zn absorption by *Chlorella*

Aims

- To examine the zinc accumulation ability of the Chlorella
- To determine the suitable duration for Chlorella enrichment with Zn

Experimental conditions

- Zinc source: ZnSO₄ (0, 4, 8 and 16 mg/10 g of condensed Chlorella regularis
- Sampling: 0h, 1h, 3h, 6h, 12h, 24h
- Replication: duplicate
- Temperature: 27°C

Zn accumulation in the Chlorella (DM)

Chlorella could absorb water-bound zinc effectively and quickly within the first 1 h of enrichment.

Experiment 3: Enrichment of rotifer with Zn-enriched *Chlorella*

Objective:

 To investigate incorporation ability of Zn in rotifer by feeding with Zn enriched Chlorella

Experimental conditions

- Condensed freshwater Chlorella vulgaris
- Supplemented with 0.0; 0.8 and 1.6 mg Zn g⁻¹
- Incubation duration was 12 hours at 25°C
- Organism: rotifer (Brachionus plicatilis) (L size);
 300 ind/mL
- Chlorella density 1.8x10⁶ cell/mL

Zn content in enriched rotifer

Summary experiment 3

- In rotifer was successfully improved by enrichment with Chlorella that preaccumulated with In.
- Zn content in the rotifer was elevated with Zn supplementation in the Chlorella.
- The Zn content in the 1.6 mg Zn group after 24 h enrichment was 640.3 μ g g⁻¹, almost equivalent to Zn content in natural *Acartia clausi* which contains 700 μ g g⁻¹ zinc (DM)

Exp 4: Enrichment *Artemia* with Zn and Mn Objectives

- To determine the incubation duration of Marine ω A[®] with Zn and Mn
- To investigate incorporation ability of Zn and Mn in Artemia

Materials

- Marine ω A ®: A commercial enrichment material made by microalgae that had been removed the cell-wall (Nisshin Marine Tech Co., Ltd., Japan)
- **Artemia**: Newly-hatched nauplii Artemia franciscana (E.G. grade, INVE, Belgium)
- **Minerals:** Zn and Mn

Methods

- Incubation of marine ω A[®].
 - >Zn levels: 0, 1.6, 3.2 mg/10g marine ω A®
 - >Mn levels: 30 and 60 μg/g marine ω A®
 - >Incubation duration: 0, 1, 3 and 6 hours
- Artemia enrichment
 - >Zn levels: 0, 0.4, 0.8 and 1.6 mg/g marine ω A®
 - ≻Mn levels: 0.12, 0.24 mg/g marine ω A®
 - >Incubation duration: 2 hours
 - >Enrichment duration: 24 hours

Incorporation of Zn and Mn in Marine ω®

Incubation 1-2 hrs was enough for Marine ω $A^{\mathbb{R}}$ to incorporate Zn and Mn

Zn and Mn content in *Artemia* at 24 hrs enrichment (DW)

Enrichment *Artemia* with Marine ω A[®] supplemented with Zn and Mn could increase Zn and Mn contents in the nauplii

Nutritional important of Zn and Mn in marine fish larvae

Experiment 5: Effect of Zn and Mn enrichment in *Artemia* on growth and vertebral deformity in red sea bream larvae

Objective

To investigate the effects of Zn and Mn supplementation in *Artemia* on growth, body compositions and skeletal deformity of red sea bream larvae

Feeding scheme & experimental conditions

➤ Tank volume: 1000 L, triplicates

Density: 20,000 larvae per tank

➤ Water T°C:
20-23 °C

Photoperiod:
12 h dark: 12 h light

Culture duration: 30 days

Artemia enrichment with Zn (0.1 mg/g) and Mn (2.4 mg/g)

Zn and Mn contents in enriched Artemia (dry-matter basis)

Growth of red sea bream at 30 dph

Survival of red sea bream during 15-30 dph

Zn and Mn content in whole body of red sea bream at 30 dph (dry-matter basis)

Typical vertebral deformities in red sea bream at 30 dph

Average percentage of fish with at least 1 skeletal deformity at 30 dph (%)

Percentage of major skeletal deformities of red sea bream at 30 dph (n=600)

Occurrence of vertebral deformity in red sea bream at 30 dph (n=600)

Summary experiment 5

- Mn supplementation in *Artemia* 12-42.8 µg g⁻¹ (dry-matter) improves growth performance of the red sea bream larvae
- Zn and Mn supplementation in Artemia
 promotes normal skeletal development of red
 sea bream larvae
- Zn and Mn contents in whole body of red sea bream were affected by Zn and Mn content in Artemia
- Zn and Mn should be supplemented together to prevent decline of Mn in enriched Artemia

Conclusion

- The Zn concentration in rotifers was significantly increased indirectly by feeding zinc-enriched Chlorella for 6 to 12 h.
- Zn and Mn contents in Artemia were significantly improved indirectly by feeding Zn and Mn enriched marine ω A[®]
- Supplementation of Zn and Mn in Artemia improves growth performance and promotes normal skeletal development of red sea bream larvae

Further readings

Aquaculture xxx (2008) xxx-xxx

Contents lists available at ScienceDirect

Aquaculture

Examination of a practical method for zinc enrichment of euryhaline rotifers (*Brachionus plicatilis*)

Seiji Matsumoto a,1, Shuich Satoh a,*, Tomonari Kotani b, Hiroshi Fushimi b

- Laboratory of Fish Nutrition, Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
- b Department of Marine Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, 452-10 Innoshima-Ohama, Onomich, Hiroshima 722-2101, Japan

Aquaculture 285 (2008) 184-192

Contents lists available at ScienceDirect

Aquaculture

journal homepage: www.elsevier.com/locate/aqua-online

Effect of zinc and manganese supplementation in *Artemia* on growth and vertebral deformity in red sea bream (*Pagrus major*) larvae

Van Tien Nguyen a,c, Shuichi Satoh a,*, Yutaka Haga a, Hiroshi Fushimi b, Tomonari Kotani b

- ^a Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
- b Department of Marine Biosciences, Fukuyama University, Onomichi, Hiroshima 722-2101, Japan
- ^c Department of Applied Biosciences, Research Institute for Aquaculture No.1, Tu Son, Bac Ninh, Viet Nam

THANK YOU VERY MUCH

