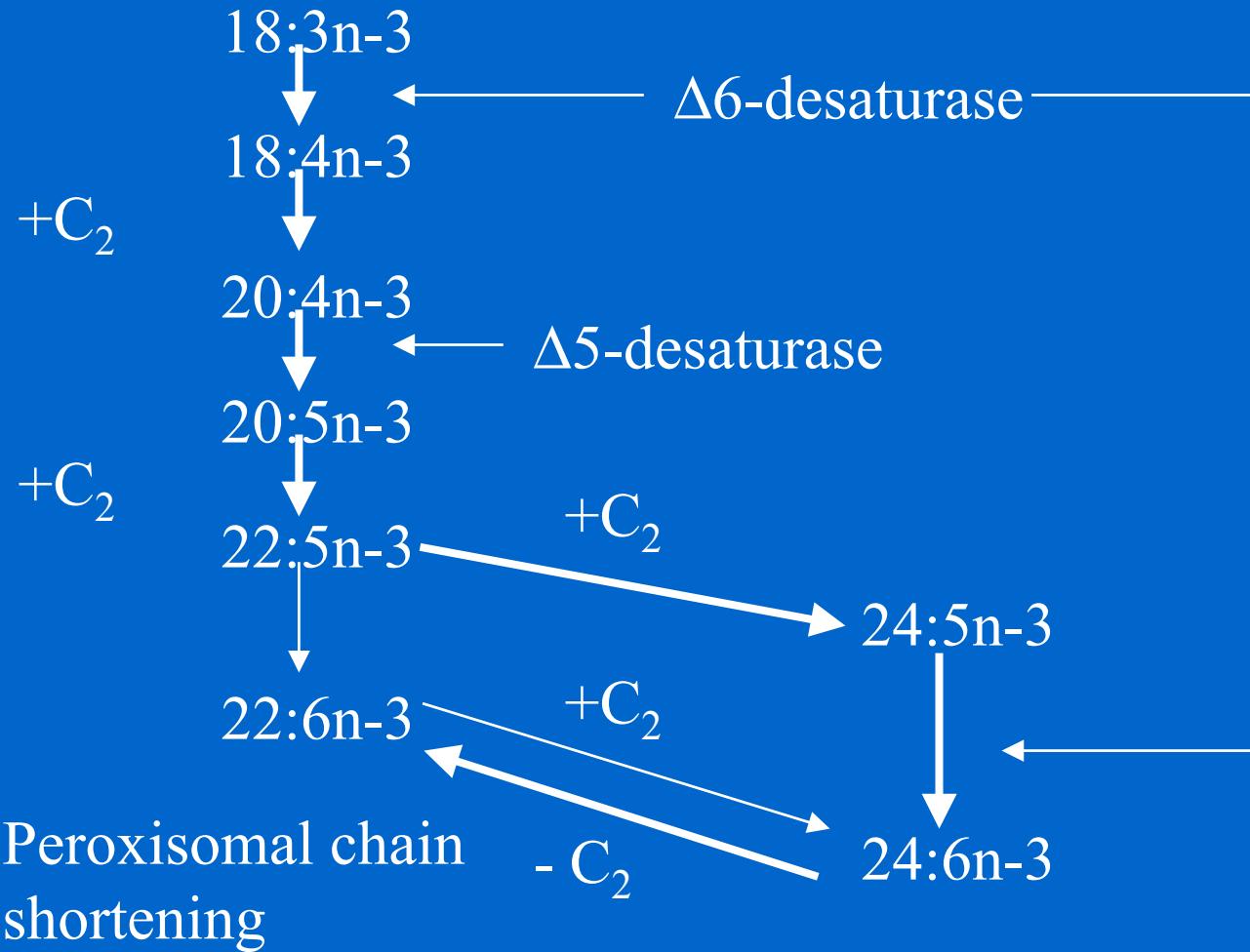


Optimising lipid nutrition in early developing flatfish larvae


Dr Gordon Bell, Nutrition Group, Institute
of Aquaculture, University of Stirling,
Stirling FK9 4LA, Scotland, U.K.

•
•
•

What are essential fatty acids?

- PUFA which cannot be synthesised *de novo* and are required for normal growth and development are EFAs.
- Consequently, they must be supplied, in the correct quantities, in the diet.
- 18:3n-3 (α -linolenic acid) and 18:2n-6 (linoleic acid) are essential for freshwater fish.
- 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 are essential for marine fish.

Pathways of desaturation and elongation of 18:3n-3

Is arachidonic acid (20:4n-6) an EFA for marine fish?

- Marine fish cannot synthesise 20:4n-6 due to lack of $\Delta 5$ -desaturase/C₁₈-C₂₀ elongase.
- 20:4n-6 must be supplied by the diet.
- This requirement is often overlooked when considering diet formulations for marine fish.
- The data of Castell et al. (1994; 1995) confirmed the essentiality of 20:4n-6 for normal growth and survival in juvenile turbot.

-
-
-

Functions of Arachidonic Acid, 20:4n-6

- Present in phospholipids to maintain the structure and function of cell membranes
- Forms the eicosanoids, highly potent local hormones formed by virtually every tissue in the body, generally in response to physiological and environmental stress.

•

•

Functions of Eicosapentaenoic Acid, 20:5n-3

- Present in phospholipids to maintain the structure and function of cell membranes
- Competes with arachidonic acid for enzymes forming eicosanoids and thereby depresses the formation of eicosanoids from arachidonic acid

-
-
-

Functions of Docosahexaenoic Acid, 22:6n-3

- Present in phospholipids to maintain the structure and function of cell membranes, particularly in neural tissue, i.e. the brain and the eye, where it is concentrated in nerve synapses

•
• EFA compositions of egg
phospholipids in marine fish*

Fatty acid	Cod	Herring	Saithe	Haddock	Whiting	Capelin	Sand eel
20:4n-6	1.9	1.0	1.6	3.7	2.4	1.1	1.9
20:5n-3	15.3	13.7	11.5	12.6	13.3	19.0	16.7
22:6n-3	28.6	31.4	27.7	27.6	30.3	24.6	25.5
DHA/EPA	1.9	2.3	2.4	2.2	2.3	1.3	1.5
EPA/ARA	8.1	13.7	7.2	3.4	5.5	17.3	8.8

Values are weight %. *Data from Tocher and Sargent, 1984.

• Target values for DHA/EPA and EPA/ARA ratios in live feeds?

- The DHA/EPA ratio should be 2:1.
- The EPA/ARA ratio should be 8:1.
- Can these values be achieved in available live prey organisms?

•
•
•

HUFA compositions of rotifers

HUFA/enrichment	None ¹	TOO ²	Super Selco TM	TOO + ARA ³
20:4n-6	trace	1.1	1.4	3.8
20:5n-3	0.2	4.6	13.7	5.2
22:6n-3	0.1	12.7	15.4	10.2
DHA/EPA	0.5	2.8	1.1	2.0
EPA/ARA	-	4.2	9.8	1.4

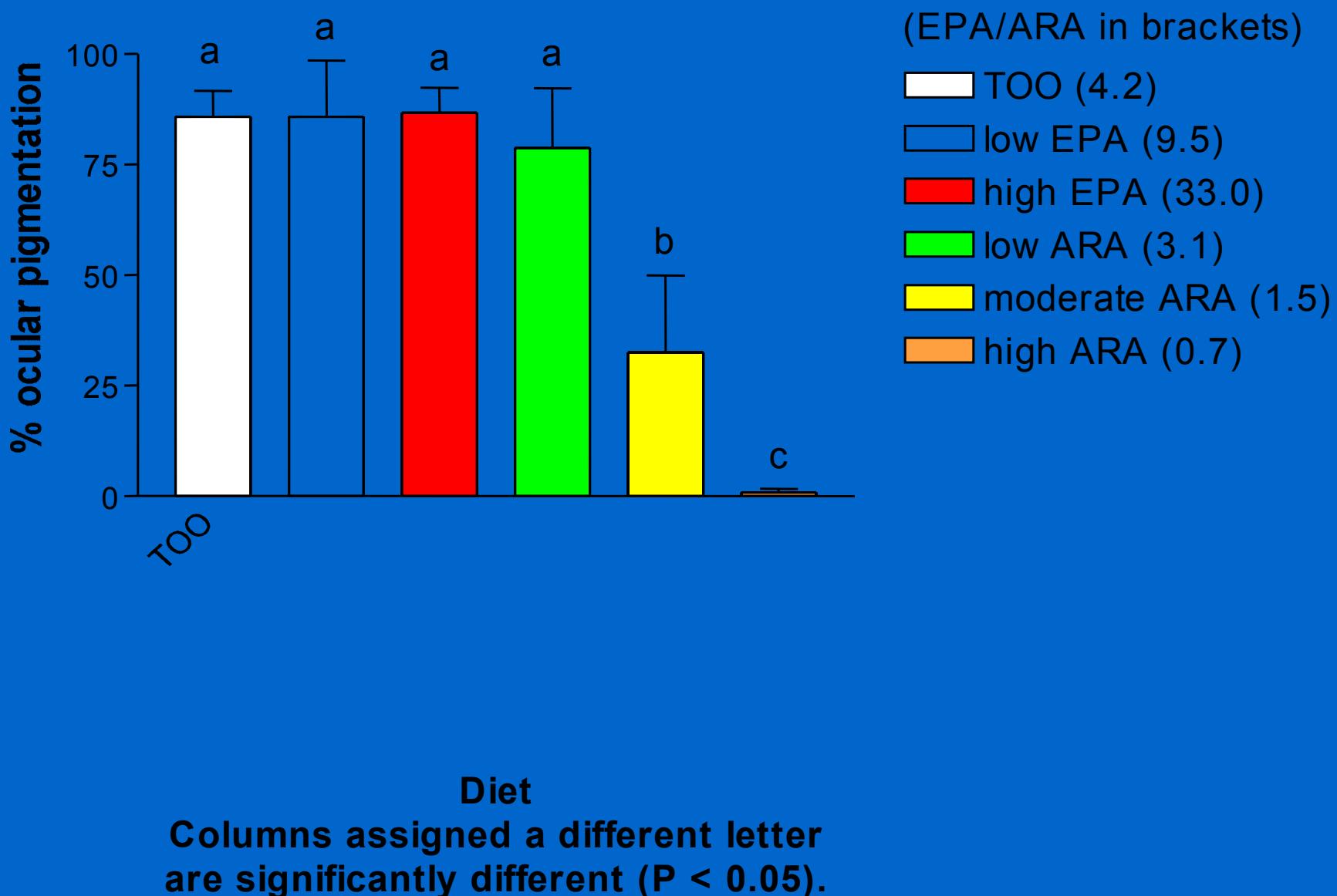
¹Rodriguez et al. 1997. ²TOO = Tuna orbital oil & ³85% TOO + 15%ARASCOTM
all contain 12% soy lecithin, from Estevez et al. 1999.

•
•
•

HUFA compositions of *Artemia*

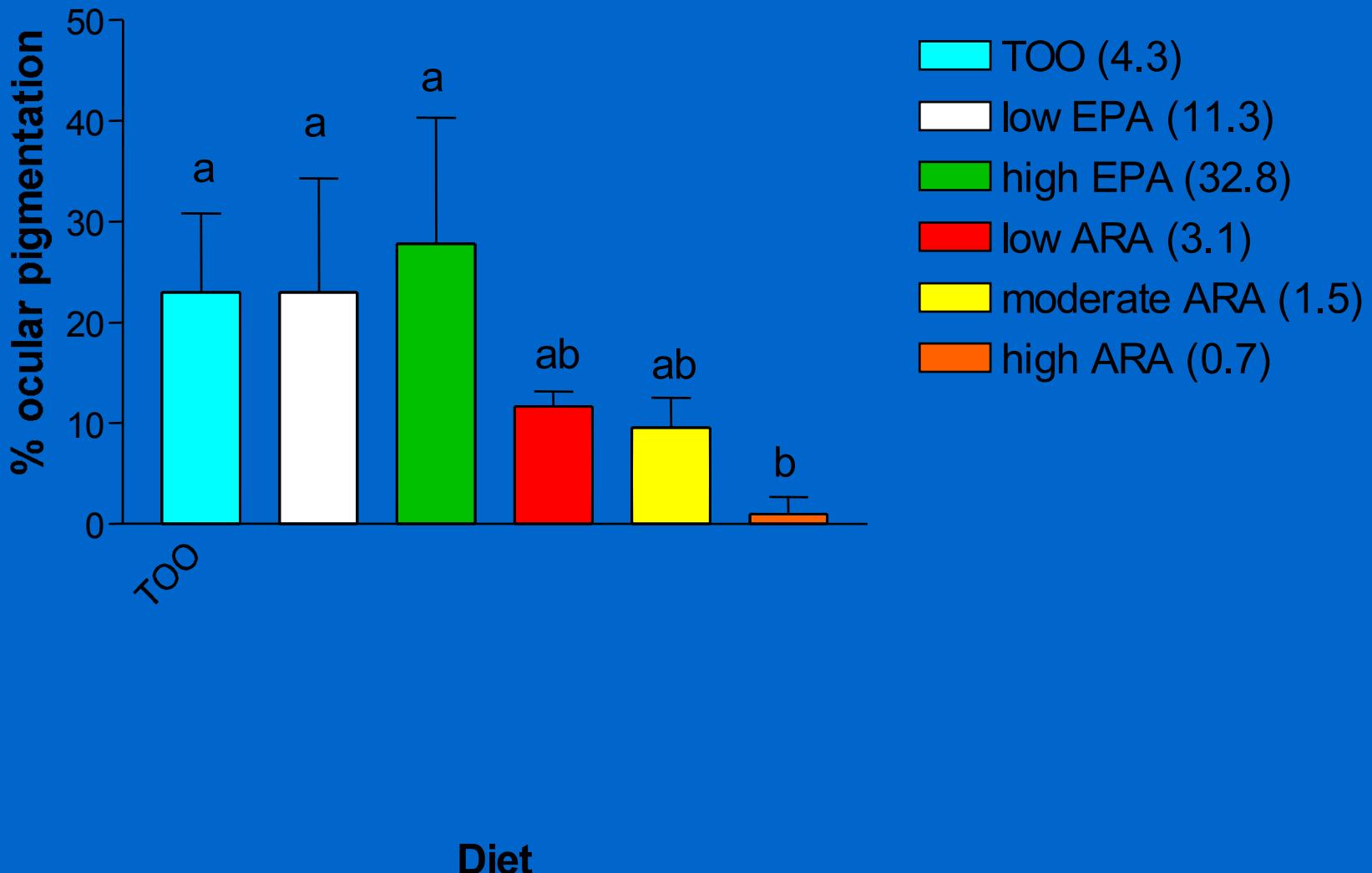
HUFA/Enrichment	none ¹	TOO ¹	AM 2000 ^{TM2}	Super Selco ^{TM2}	DHA Selco ^{TM3}
20:4n-6	1.2	1.8	1.7	1.3	1.5
20:5n-3	5.3	7.6	7.1	16.5	8.3
22:6n-3	0.0	10.0	6.5	9.3	9.4
DHA/EPA	0.0	1.4	0.9	0.6	1.1
EPA/ARA	4.6	4.2	4.1	13.0	5.5

¹Estevez et al. 1999; ²Algamac 2000TM, Gara et al. 1998; ³Hamre et al. 2001.


•
•
•

HUFA compositions of copepods

HUFA/species	<i>E.velox</i> ¹	<i>T.furcata</i> ²	Mixed nauplii ³	<i>A. tonsa</i> ⁴
20:4n-6	1.8	1.7	0.3	0.8
20:5n-3	10.8	11.2	9.2	6.8
22:6n-3	21.8	24.7	39.4	30.3
DHA/EPA	2.0	2.2	4.3	4.5
EPA/ARA	6.0	6.6	30.7	9.2


¹Shields et al. 1999; ²Bell et al. 1993; ³nauplii of *E. affinis*, *A. teclae* and *C. hamatus*; McEvoy et al. 1998; intensively cultured nauplii, Støttrup et al. 1999.

Pigmentation success in turbot fed diets varying in 20:4n-6 and 20:5n-3 content

Pigmentation success in halibut fed diets varying in 20:4n-6 and 20:5n-3 content

(EPA/ARA ratio in brackets)

• Comparison of pigmentation success in turbot and halibut

- Why is pigmentation so much better in turbot compared to halibut given the same diets?
- Turbot were fed initially on rotifers, then *Artemia*, whereas halibut had only *Artemia*.
- Halibut were not fed the experimental diets from first-feeding being weaned onto “control” diet of AM2000™/Super Selco™ (until 488 d°).

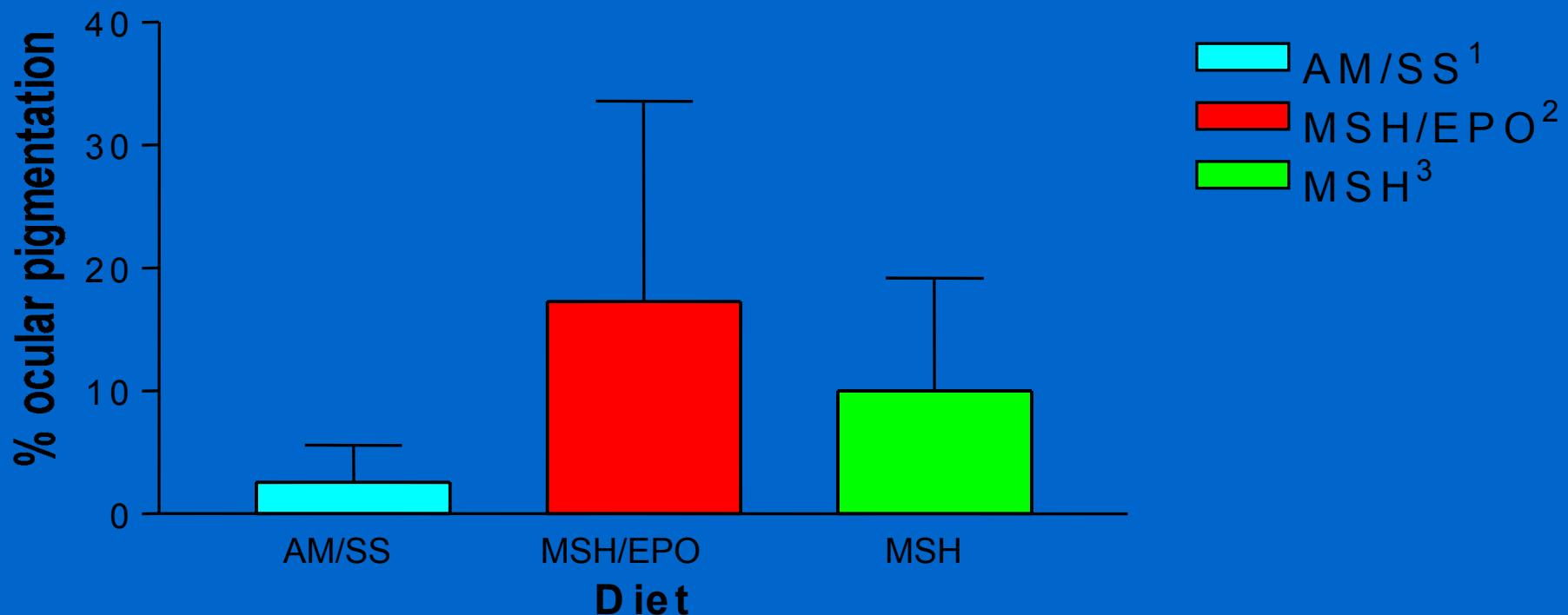
•

•

Why is the rotifer feeding stage important?

- Dietary phospholipids enhance growth and development in marine fish larvae.
- The HUFA composition of dietary PL will determine their efficacy.
- Having the correct HUFA in the *sn*-2 position will allow direct incorporation of PL into cell membranes of rapidly growing larvae.

HUFA compositions in the total polar lipid fraction of rotifers, *Artemia nauplii* & *C. finmarchicus*


HUFA	Rotifer		<i>Artemia</i>		<i>C. finmarchicus</i> ¹
enrichment	TOO	SS	TOO	SS	
20:4n-6	2.0	1.4	2.4	1.6	0.6
20:5n-3	8.1	11.1	11.5	14.9	24.0
22:6n-3	12.4	9.8	2.4	0.6	40.6
DHA/EPA	1.5	0.9	0.2	0.0	1.7
EPA/ARA	4.1	7.9	4.8	9.2	40.0

¹Scott, C. 2001, PhD. thesis.

•
•
•
Is pigmentation linked to eicosanoid
production?

- Evidence from previous experiments suggests that diets with EPA/ARA ratios > 5 result in better pigmentation than diets with EPA/ARA < 5 .
- If pigmentation is affected by ARA-derived eicosanoids then enrichments containing γ -linolenic acid (18:3n-6) might improve pigmentation.

Pigmentation success in halibut fed *Artemia* enriched with fish oil and evening primrose oil

¹Algamac™ /Super Selco™ (control)

²Fish oil (mackerel/sprat/herring, 50%), EPO concentrate (30%), Krill phospholipid (20%).

³Fish oil (mackerel/sprat/herring, 80%), Krill phospholipid (20%).

Summary

- In terms of lipid composition, copepod nauplii are the best live prey for early flatfish larvae.
- Live prey should have a DHA/EPA ratio of >1 and, preferably, close to 2.
- Live prey containing phospholipids, rather than triglycerides, rich in DHA and EPA are beneficial to growth and development.
- For this reason, in the absence of copepods, early rotifer feeding is beneficial in terms of digestibility & availability of essential HUFAs.

Summary continued

- Pigmentation can be improved by using *Artemia* enrichment diets which have a high EPA/ARA ratio (> 5) or rich in 18:3n-6.
- Evidence in halibut suggests that the period before 570 day^o is vital in determining pigmentation success, supporting the “pigmentation window” of Naess & Lie, 1998.
- Feeding oils rich in energy-rich monounsaturates after the pigmentation window seems to improve growth & eye migration.

•

•

•

Acknowledgements

- Lesley McEvoy (UK Technology Foresight Challenge)
- Alicia Estevez (EU FAIR)
- Robin Shields
- John Sargent